run_visit_sim()
runs the visit-based simulation, returning standard
and stochastic outputs.
Usage
run_visit_sim(
pathway_vector_visit = parent.frame()$pathway_vector_visit,
nruns = parent.frame()$nruns,
temp_seed = parent.frame()$temp_seed,
sim_length = parent.frame()$sim_length,
warmup = parent.frame()$warmup,
init_occ_visit = parent.frame()$init_occ_visit,
init_niq_visit = parent.frame()$init_niq_visit,
arr_rates_visit = parent.frame()$arr_rates_visit,
mean_los_visit = parent.frame()$mean_los_visit,
costs_visit = parent.frame()$costs_visit,
cap_visit = parent.frame()$cap_visit,
scenarios_visit = parent.frame()$scenarios_visit,
srv_dist_visit = parent.frame()$srv_dist_visit,
srv_params_visit = parent.frame()$srv_params_visit,
sd_los_visit = parent.frame()$sd_los_visit,
sd_isr = parent.frame()$sd_isr,
sd_esr = parent.frame()$sd_esr
)
Arguments
- pathway_vector_visit
Character vector with list of scenarios, e.g. c("P1_B_BCap_Blos_BArr", "P1_B_BCap_S1los_BArr")
- nruns
Integer - number of times to run simulation for each scenario, e.g. 5
- temp_seed
Integer - temporary seed value, used to calculate seed for simulation, e.g. 1
- sim_length
Integer - length of simulation, e.g. 181
- warmup
Integer - length of warmup, e.g. 0
- init_occ_visit
List of integers - each integer is the initial number of patients occupying the pathway when the simulation starts, e.g. list(71, 71)
- init_niq_visit
List of integers - each integer is the initial number of patients waiting in a queue to enter the pathway when the simulation starts, e.g. list(42, 42)
- arr_rates_visit
Dataframe - first column is date, subsequent columns are each scenario, with elements of dataframe being the arrival rate for each scenario and date, e.g. data.frame(date = as.Date(c("2023-01-01", "2023-01-02")), P1_B_BCap_Blos_BArr = c(3.790697, 3.047619))
- mean_los_visit
List of floats - each float is the mean of the normal length of stay distribution, e.g. list(12.08, 10)
- costs_visit
Dataframe - with community cost and acute cost for each location, e.g. data.frame(node = c("P1_B"), community_cost = c(125), acute_dtoc = c(346))
- cap_visit
Integer vector - each integer is the capacity, length is same as number of scenarios/locations, e.g. c(92, 2000)
- scenarios_visit
Dataframe with scenarios for visit-based simulation
- srv_dist_visit
List with distribution for length of stay, e.g. list("lnorm", "lnorm")
- srv_params_visit
List containing mean and SD for the lnorm length of stay distribution, e.g. list(c(1.52, 1.32), c(1.60, 1.33))
- sd_los_visit
List with the standard deviation of the normal length of stay distribution, e.g. list(3, 3)
- sd_isr
Float - standard deviation for initial service rate distribution, e.g. 0.5
- sd_esr
Float - standard deviation for end service rate distribution, e.g. c(0.5, 0.5)